Journal of Cardiovascular Magnetic Resonance

Meeting abstract

Open Access

241 Cardiac T2* MRI at 3.0 Tesla for the detection of myocardial ischemia

Robert Manka*, Cosima Jahnke, Bernhard Schnackenburg, Rolf Gebker, Eckart Fleck and Ingo Paetsch

Address: German Heart Institute Berlin, Berlin, Germany

* Corresponding author

from 11th Annual SCMR Scientific Sessions Los Angeles, CA, USA. 1-3 February 2008

Published: 22 October 2008

Journal of Cardiovascular Magnetic Resonance 2008, 10(Suppl 1):A102 doi:10.1186/1532-429X-10-S1-A102

This abstract is available from: http://jcmr-online.com/content/10/S1/A102

© 2008 Manka et al; licensee BioMed Central Ltd.

Introduction

Alterations of myocardial oxygenation/microcirculation can be studied by measurements of the transverse relaxation time T2*, which represents a measure for the oxygenation level of hemoglobin.

Purpose

Purpose of this study was to evaluate the diagnostic performance of cardiac T2* measurements during adenosine stress for the detection of myocardial ischemia.

Methods

16 patients (mean age 63 ± 9 years, 6 female) suspected of having coronary artery disease and being scheduled for invasive coronary angiography underwent cardiac MR (CMR) imaging at 3.0 T (Philips Achieva, Best, NL). T2* measurements were performed in 3 short axis slices of the heart (6 echoes per slice) at rest and under adenosine stress (140 μ g/kg/min over 6 min).

Quantitative coronary angiography served as standard of reference (significant luminal diameter narrowing \geq 50%). Average T2* values of the myocardium were calculated from the mean value of the signal intensities in the ROI using the standard 16 segment model.

Results

7 patients (44%) had significant coronary disease; T2* measurement resulted in a sensitivity and specificity of

86% and 67%, respectively (patient based analysis; area-under-curve from ROC-analysis: 0.65).

Conclusion

Cardiac T2* measurements under adenosine stress at 3 T can detect myocardial ischemia in the presence of coronary artery stenosis.