POSTER PRESENTATION

Open Access

Use of contrast-enhancement and high-resolution 3D black-blood MR Imaging to identify inflammation in rabbit atherosclerotic plaques

Yoo Jin Hong*, Jin Hur, Jaeseok Park, Young Jin Kim, Hye-Jeong Lee, Byoung Wook Choi, Kyu-Ok Choe

From 2011 SCMR/Euro CMR Joint Scientific Sessions Nice, France. 3-6 February 2011

Background

Inflammation plays a critical role in plaque initiation, progression, and disruption. As such, inflammation represents an emerging target for the treatment of atherosclerosis.

Purpose

We investigated the contributing factors for plaque enhancement and examined the relationships between regional contrast enhancement and the inflammatory activity of atherosclerotic plaques in an experimental rabbit model using contrast-enhanced high-resolution 3D black-blood magnetic resonance imaging (MRI) in comparison with histopathology.

Methods

Ten atherosclerotic rabbits and three normal control rabbits underwent high-resolution 3D contrast-enhanced black-blood MRI. MR images and the corresponding histopathological sections were divided into four quadrants. Plaque composition was analyzed for each quadrant according to histopathological (percent of lipid-rich, fibrous, macrophage area and microvessel density) and imaging criteria (enhancement ratio (ER), ER=SIpost/SIpre).

Results

A total of 62 non-calcified plaques (n=248, 156 lipid-rich quadrants and 92 fibrous quadrants) were identified based on histopathology. Mean ER values were significantly higher in atherosclerotic vessel walls than in normal vessel walls (2.03 \pm 0.25 vs 1.58 \pm 0.15, p = 0.017).

Mean ER values were significantly higher in macrophage-rich plaques compared to the macrophage-poor plaques (2.21 \pm 0.28 vs 1.81 \pm 0.22, p = 0.008). Using multiple regression analysis, macrophage area and microvessel density were independently associated with ER values that reflected plaque enhancement (p <0.001).

Conclusion

Contrast-enhanced high-resolution 3D black-blood MRI may be an efficient method to predict plaque inflammation.

Published: 2 February 2011

doi:10.1186/1532-429X-13-S1-P22

Cite this article as: Hong *et al.*: Use of contrast-enhancement and high-resolution 3D black-blood MR Imaging to identify inflammation in rabbit atherosclerotic plaques. *Journal of Cardiovascular Magnetic Resonance* 2011 13(Suppl 1):P22.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

Severance hospital, Seoul, Korea, Republic of

