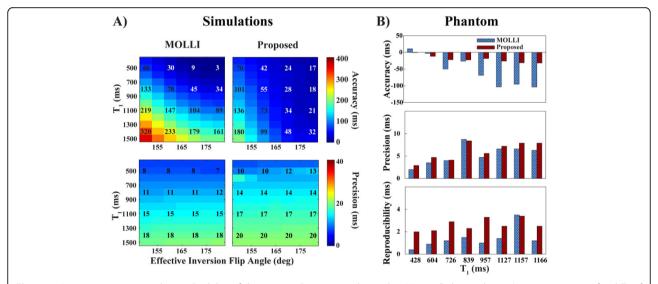
WORKSHOP PRESENTATION

Open Access

Free-breathing myocardial T₁ mapping using magnetization-prepared slice interleaved spoiled gradient echo imaging


Sébastien Roujol^{1*}, Jihye Jang^{1,2}, Tamer A Basha¹, Sebastian Weingartner^{1,3}, Sophie Berg¹, Reza Nezafat¹

From 18th Annual SCMR Scientific Sessions Nice, France. 4-7 February 2015

Background

Quantitative myocardial T_1 mapping and extracellular volume fraction (ECV) show promise for non-invasive assessment of cardiomyopathies. Most available T_1 mapping sequences use a single slice breath-hold acquisition with balanced steady state free precession

(b-SSFP) readout [1]. However, b-SSFP readout is sensitive to B_0 field inhomogeneity and is potentially T_2 dependent [1]. In this study, we sought to investigate the feasibility of a free breathing multi-slice T_1 mapping sequence using slice-interleaved spoiled gradient echo (GRE) imaging.

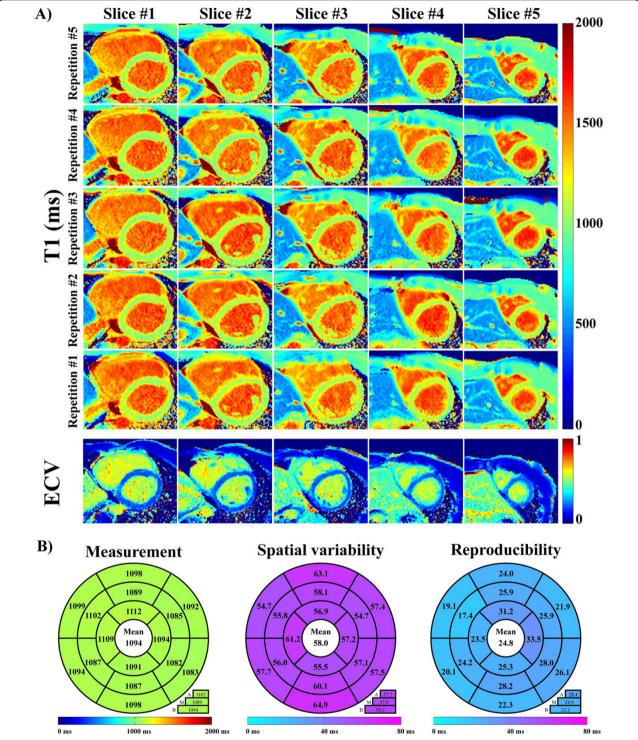


Figure 1 Accuracy, precision and reproducibility of the proposed sequence obtained in Monte Carlo simulation (20,000 repetitions, fixed T_2 of 50 ms, SNR corresponding to 50 in the ∞ image) (a) and phantom experiments (set of vials with NiCl2 doped agarose, 15 repetitions of the sequence) (b). Results were compared to the MOLLI (5-(3)-3 scheme) sequence. Accuracy was measured in each vial as the difference between spin echo T_1 measurements and the average T_1 over all 15 repetitions. Precision was measured in each vial as the average (over all 15 repetitions) of the standard deviation of T_1 within a vial. Reproducibility was measured in each vial as the standard deviation (over all 15 repetitions) of the mean T_1 within a vial. Improved accuracy and similar precision were achieved using the proposed sequence in both simulations and phantom experiments. T_1 mapping reproducibility was slightly decreased with the proposed sequence.

Full list of author information is available at the end of the article

¹Department of Medicine (Cardiovascular Division), BIDMC / Harvard Medical School. Boston. MA. USA

Figure 2 In-vivo native T_1 and ECV mapping using the proposed sequence. Example of multi-slice T_1 maps and ECV maps obtained in one healthy subject is shown in (a). Homogeneous T_1 map quality was achieved in all slices for all five repetitions. Homogeneous ECV map quality was also observed through all slices. Native T_1 measurements, spatial variability, and reproducibility obtained using the proposed sequence, are reported in average over all subjects in (b). Each metric was quantified using a 16 myocardial segment model in all subjects by analysis of the three mid-ventricular slices. Spatial variability was measured for each segment as the average (over the five repetitions of all subjects) of the standard deviation of T_1 measurements within that segment. Reproducibility was measured for each segment as the average (over all subjects) of the standard deviation (over the 5 repetitions) of the mean T_1 time of that segment.

Methods

The proposed sequence used multiple inversion recovery (IR) experiments. In each IR experiment, a non-selective inversion pulse is applied and followed by the acquisition of 5 slices over the next 5 heart beats, and 3 rest cycles [2]. This IR experiment is repeated 5 times using different slice orders to obtain signal samples at TI, TI + 1 RR, TI + 2 RR, TI + 3 RR, TI + 4 RR. This block of 5 IR experiments is finally repeated using a different TI value. The fully recovered longitudinal magnetization is also initially acquired for each slice without any IR pulse (∞ image). Respiratory motion was corrected using prospective slice tracking and retrospective image registration. ECG-triggered single shot acquisitions were used with GRE readout $(TR/TE/\alpha=4.3/2.1ms/10^{\circ})$, FOV=280×272 mm², voxel size=2×2 mm², slice thickness=8 mm, 5 slices, 43 phase-encoding lines, linear ordering, 10 linear ramp-up pulses, SENSE factor=2.5, half Fourier=0.75, bandwidth=382Hz/pixel). For comparison, MOLLI [3] was acquired with a b-SSFP readout and similar parameters (except $TR/TE/\alpha = 2.6/1.3 \text{ms}/70^\circ$, 1 slice, bandwidth=1785 Hz/pixel). Imaging was performed on a 1.5 T Philips scanner. T₁ accuracy, precision, and reproducibility were evaluated in simulations and phantom. In-vivo spatial variability and reproducibility of native T₁ mapping was measured in 11 healthy adult subjects (35±21y, 4 m), imaged 5 times with each sequence. Three of these subjects were also imaged at ~15min after contrast injection to demonstrate the feasibility of ECV mapping.

Results

The proposed sequence provided improved accuracy and similar precision than MOLLI in both simulation and phantom experiments (accuracy: p=0.01; precision: p=0.16). MOLLI was more reproducible in phantom (p<0.001). In-vivo, the proposed sequence yielded higher native T_1 times than MOLLI (1094±24ms vs. 1010 ± 27 ms, p<0.001) with similar spatial variability (58±7ms vs. 61 ± 9 ms, p=0.44) and reproducibility (25±9ms vs. 17 ± 8 ms, p=0.15). ECV measurements were 0.21±0.01 using the proposed sequence.

Conclusions

Free breathing multi-slice T_1 mapping using a magnetization-prepared slice interleaved spoiled GRE imaging is feasible and yields similar in-vivo precision/reproducibility as MOLLI but with improved accuracy. In addition, the proposed sequence allows simultaneous imaging of 5 slices within free-breathing in 100 sec.

Authors' details

¹Department of Medicine (Cardiovascular Division), BIDMC / Harvard Medical School, Boston, MA, USA. ²Computer Aided Medical Procedures, Technische Universität München, Munich, Germany. ³Computer Assisted Clinical

Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.

Published: 3 February 2015

References

- 1. Kelmann: JCMR 2014.
- 2. Weingärtner: MRM 2014.
- 3. Messroghli: MRM 2004.

doi:10.1186/1532-429X-17-S1-W7

Cite this article as: Roujol *et al.*: Free-breathing myocardial T₁ mapping using magnetization-prepared slice interleaved spoiled gradient echo imaging. *Journal of Cardiovascular Magnetic Resonance* 2015 17(Suppl 1):

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

