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Abstract 

Background: Theoretically, artificial intelligence can provide an accurate automatic solution to measure right 
ventricular (RV) ejection fraction (RVEF) from cardiovascular magnetic resonance (CMR) images, despite the complex 
RV geometry. However, in our recent study, commercially available deep learning (DL) algorithms for RVEF quantifica‑
tion performed poorly in some patients. The current study was designed to test the hypothesis that quantification of 
RV function could be improved in these patients by using more diverse CMR datasets in addition to domain‑specific 
quantitative performance evaluation metrics during the cross‑validation phase of DL algorithm development.

Methods: We identified 100 patients from our prior study who had the largest differences between manually meas‑
ured and automated RVEF values. Automated RVEF measurements were performed using the original version of the 
algorithm (DL1), an updated version (DL2) developed from a dataset that included a wider range of RV pathology and 
validated using multiple domain‑specific quantitative performance evaluation metrics, and conventional method‑
ology performed by a core laboratory (CORE). Each of the DL‑RVEF approaches was compared against CORE‑RVEF 
reference values using linear regression and Bland–Altman analyses. Additionally, RVEF values were classified into 3 
categories: ≤ 35%, 35–50%, and ≥ 50%. Agreement between RVEF classifications made by the DL approaches and the 
CORE measurements was tested.

Results: CORE‑RVEF and DL‑RVEFs were obtained in all patients (feasibility of 100%). DL2‑RVEF correlated with CORE‑
RVEF better than DL1‑RVEF (r = 0.87 vs. r = 0.42), with narrower limits of agreement. As a result, DL2 algorithm also 
showed increasing accuracy from 0.53 to 0.80 for categorizing RV function.

Conclusions: The use of a new DL algorithm cross‑validated on a dataset with a wide range of RV pathology using 
multiple domain‑specific metrics resulted in a considerable improvement in the accuracy of automated RVEF meas‑
urements. This improvement was demonstrated in patients whose images were the most challenging and resulted 
in the largest RVEF errors. These findings underscore the critical importance of this strategy in the development of DL 
approaches for automated CMR measurements.
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Introduction
Right ventricular (RV) function is an important predictor 
of outcomes in patients with heart disease [1–3]. How-
ever, the non-invasive assessment of RV size and function 
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is significantly limited by its complex geometry. Cardio-
vascular magnetic resonance (CMR) quantification of RV 
volume using the method of disks is currently considered 
the reference standard for RV size and RVejection frac-
tion (RVEF), because the entire chamber is imaged, the 
boundary between the RV myocardium and blood pool is 
clearly delineated, and no geometric assumptions about 
the RV shape are needed [4]. Indeed, the assessment of 
RV size and function using CMR has been shown to be of 
prognostic significance in patients with ischemic [5] and 
non-ischemic cardiomyopathy [6], valvular heart disease 
[7], congenital heart disease [8], and pulmonary hyper-
tension [9]. Furthermore, quantification of RV size is an 
important determinant for guiding interventions, such as 
pulmonary valve replacement in patients with tetralogy 
of Fallot [10]. In patients with ischemic or non-ischemic 
cardiomyopathy, the presence of reduced RVEF in addi-
tion to reduced left ventricular (LV) function can better 
identify patients who may benefit from implantable car-
dioverter defibrillator and other interventions [1, 2].

Nevertheless, manual segmentation of the RV cavity 
is time-consuming and has greater inter-reader variabil-
ity than is seen for the LV cavity [11–14]. The availabil-
ity of an image analysis tool that can accurately and 
automatically quantify RV size and function from CMR 
images would not only help standardize image interpre-
tation, but also improve clinical workflow. While several 
commercial tools are capable of accurately assessing LV 
volumes and ejection fraction, it is well recognized that 
these tools do not perform as well for the RV assessment. 
Indeed, we recently demonstrated that the RVEF meas-
ured using several commercial software tools resulted in 
clinically significant errors when compared to conven-
tional measurements performed by an expert [15].

Most currently available software that automatically 
quantifies RV size and function from CMR images are 
complex algorithms that use a form of artificial intel-
ligence referred to as deep learning (DL) [16, 17]. Such 
algorithms are typically trained and tested using thou-
sands of CMR images with the key anatomy annotated by 
expert physicians. Due to the scarcity of well annotated 
CMR images, publicly available datasets which are fairly 
homogenous in nature, are often utilized to develop these 
DL algorithms. Although a homogenous dataset may be a 
good way to build the foundations of a DL algorithm, as it 
often implies standardized labelling or contouring proce-
dures, the absence of a heterogeneous dataset during the 
testing phase of development may result in an algorithm 
that functions poorly in clinical practice, where more 
diverse disease states and image quality are encountered 
that were not adequately reflected by the training data-
set. In this study, we hypothesized that the use of more 
diverse CMR datasets, which incorporate a wider range 

of RV pathology, scanner vendors, and imaging quality in 
addition to the use of multiple domain-specific quantita-
tive performance evaluation metrics during cross-valida-
tion phase of DL algorithm development would result in 
a more generalized model and thus more accurate quan-
tification of RV size and function in a subset of patients 
in whom the previous version of the software did not 
perform well.

Methods
Data and materials used in this study will not be made 
publicly available.

Population and study design
From our prior study [15], in which we compared the 
ability of several commercial DL-algorithms to automati-
cally calculate RVEF against reference measurements 
made by a clinical expert. For this study, we selected 100 
cases (of the 200 total) with the largest discrepancies 
between the DL-generated and reference RVEFs (Group 
1). Automated RVEF measurements were performed 
using an updated version of the DL algorithm (DL2) 
cross-validated on a diverse dataset of CMR images. 
To assess the improvement in algorithm performance 
afforded by this strategy, these measurements were com-
pared side-by-side with the measurements performed 
using the original software (DL1) against the same ref-
erence standard. These comparisons included actual 
RVEF values and also classification of RV function based 
on these values, namely normal, mildly to moderately 
reduced and severely reduced function. In addition, simi-
lar comparisons were performed on the remaining 100 
patients in whom the original DL1 algorithm performed 
well, i.e. with the least discrepancies with the reference 
RVEFs (Group 2), in order to verify that the algorithm 
modifications did not have detrimental effects on RVEF 
measurements in these patients.

All subjects had previously signed informed consent to 
be included in a CMR registry permitting their images, 
clinical data, and outcomes to be used for future research. 
Patient demographics and clinical history were extracted 
from the electronic medical records. The protocol was 
approved by the Institution Review Board.

Deep learning algorithm development
DL algorithm 1
The DL1 segmentation model, included in cvi42 (version 
5.11, Circle Cardiovascular Imaging, Calgary, Alberta, 
Canada), is founded on a convolutional neural network 
(CNN) based on the U-net architecture. The CNN is 
trained to associate pixel intensities of a CMR image to 
segmentation maps corresponding to the desired ven-
tricular contours. During the training stage, the model 
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parameters of CNN were optimized to reduce an energy 
function computed using the pixel-wise cross-entropy 
loss function, which penalizes the CNN when it does not 
correctly predict the segmentation label of a given pixel.

The initial machine learning-based RV contouring 
CNN was trained on multiple datasets summarized in 
Table  1. Standard image augmentation techniques were 
employed during the training phase. The training hyper-
parameters of the DL1 model were selected by train-
ing multiple models with varying hyperparameters and 
selecting the model that performed the best on the cross-
validation data presented in Table  1, which comprised 
solely of United Kingdom Biobank (UKBB) studies. The 
candidate models were compared against one another 
by computing the mean dice similarity coefficient (DSC) 
between predicted contours and manual annotations for 
each contour (RV, LV endocardium, and LV epicardium) 
independently.

DL algorithm 2
DL2, included in cvi42 (Version 5.13, Circle Cardiovas-
cular Imaging) was trained using the exact same CNN 
architecture as DL1. Prior to training DL2, 9745 new 
images were added to the Clinical dataset and the dataset 
was resampled such that roughly 20% of the cases were 
used in training and the remainder were kept for cross-
validation. 460 additional tetralogy of Fallot images and 
9202 additional images from UKBB  were also added 
to the cross-validation dataset. Importantly, the cross-
validation process was performed on this dataset and 
model selection was done in a manner that was blind to 
the cases on which it was tested and reported on in this 
study.

Additional quantitative performance metrics were used 
to assess the performance of the algorithm during the 
cross-validation phase as a spatial overlap metric, such 
as DSC fails to capture potential biases in the predicted 
contours [18]. In addition to DSC, the contour spatial 
distance based Hausdorff distance metric and domain 
specific performance metrics were computed, including 
absolute errors in RV volume prediction, LV volume and 
LV ejection fraction (LVEF) prediction, myocardial mass 

consistency and contour consistency. The total number 
of discontinuous predictions in the midventricular region 
was also computed to favor the selection of models with 
highly consistent predictions. The mean and standard 
deviation of all performance metrics were considered 
independently to select the most performant model. The 
change in the cross-validation process resulted in a dif-
ferent choice in hyperparameters. Specifically, there were 
changes in how each training batch was sampled, the fre-
quency of the augmentations, and the point in time at 
which the training algorithm is stopped.

Image acquisition
Vasodilator contrast-enhanced stress perfusion CMR 
imaging was performed using a 1.5-T scanner (Achieva, 
Philips Healthcare, Best, The Netherlands) with a five-
element phased array cardiac coil. Retrospectively gated 
cine images were obtained following stress perfusion 
imaging using a balanced steady-state free precession 
(bSSFP) sequence, during approximately 5-s breath holds 
(repetition time 2.9 ms; echo time 1.5 ms; flip angle 60°; 
temporal resolution 30–40 ms). Standard long-axis views 
were obtained, including four-chamber, two-chamber, 
and three-chamber images. In addition, six to ten short-
axis slices were obtained from the LV and RV base to the 
apex (slice thickness 8 mm; gap 2 mm).

Conventional image analysis
The cine-CMR images were analyzed semi-automatically 
using commercial software (CardioAI, Arterys, San Fran-
cisco, California, USA) by an experienced expert reader 
in our core lab, who was blinded to clinical information. 
Using the short-axis cine images, the RV endocardial 
boundary was automatically detected by the software 
and then corrected by the expert in end-diastolic and 
end-systolic frames. RV papillary muscles and trabecular 
tissue were included in the blood pool volume. The RV 
outflow tract was included in the RV volume to the level 
of the pulmonary valve. When the boundary between 
the atrium and ventricle was unclear, long axis views and 
other frames of the cardiac cycle were reviewed to dif-
ferentiate between the two chambers. Simpson’s method 

Table 1 Summary of data (total number of cardiovascular magnetic resonance (CMR) images) used during the training and cross‑
validation phase of the development of the deep learning (DL) algorithms described herein

Three datasets were used during algorithm training consisting of images from the UK Biobank (UKBB), tetralogy of Fallot (ToF), and clinical dataset consisting of 
various pathologies including hypertrophic cardiomyopathy, dilated cardiomyopathy, pulmonary hypertension, and left ventricular non-compaction cardiomyopathy

Training datasets Cross-validation datasets

Datasets UKBB ToF Clinical UKBB ToF Clinical

DL1 67,907 513 1900 16,977 0 0

DL2 67,907 513 2033 26,179 460 9612



Page 4 of 12Wang et al. Journal of Cardiovascular Magnetic Resonance           (2022) 24:27 

of disks was used to calculate RV end-diastolic volume 
(RVEDV) and end-systolic volume (RVESV), and RVEF. 
All volume measurements were indexed to body surface 
area. The RV measurements made by the core lab expert 
were considered as the reference standard (CORE-RVEF, 
CORE-RVEDV, CORE-RVESV). CORE-RVEF were used 
to divide the patient cohort into three clinically relevant 
groups [19–21]: severely reduced RVEF (≤ 35%), mildly 
to moderately reduced RVEF (35–50%), and normal 
RVEF (≥ 50%).

DL image analysis
The RVEF was determined using two different fully auto-
mated DL-algorithms DL1 and DL2, described above. 
Cine images were uploaded into the software and fully 
automated segmentation was then performed without 
any further user input. A plane demarcating the ventric-
ular base was identified automatically. Using the entire 
short axis stack and standard long axis views, both DL1 
and DL2 generated time-volume curves, from which end-
diastole and end-systole were automatically determined 
and used to calculate RVEDV, RVESV, and RVEF.

Statistics
Continuous variables were tested for normal distribution. 
Continuous variables that were not normally distributed, 
were presented as the median with interquartile range 
(IQR). Categorical variables were presented as absolute 
numbers with percentages. Inter-technique compari-
sons included linear regression analysis with Pearson 
correlation coefficients and Bland–Altman analyses of 
biases and limits of agreement. This included the agree-
ment between each of the DL techniques (DL1 and DL2) 
against the CORE reference. Histograms displaying 
the difference in RVEF measurements between the DL 
algorithms and the core lab were generated. Confusion 
matrices were generated for each DL-RVEF algorithm 
to display the concordance/discordance with the CORE-
RVEF for each of the RVEF categories (≤ 35%, 35–50%, 
and ≥ 50%). The sensitivity, specificity, and accuracy of 
DL1-RVEF and DL2-RVEF algorithms’ ability to correctly 
categorize RV function were also calculated. Reproduc-
ibility was tested for the 2 DL algorithms on 20 randomly 
selected patients and by manual analyses by two expert 
readers, including inter- and intra-observer reproduc-
ibility. Inter- and intra- observer variability was assessed 
using intraclass correlation coefficients (ICC) and coeffi-
cients of variation (CoV). P-values < 0.05 were considered 
significant. Analyses were performed using SPSS soft-
ware (version 23.0, Statistical Package for the Social Sci-
ences, International Business Machines, Inc., Armonk, 
New York, llinois, USA).

Results
Patient demographics
Patient characteristics for Group 1 are shown in Table 2 
along with the relevant imaging findings. Figure  1 
shows examples of RV boundaries as determined by the 
core-lab and by the 2 DL algorithms.

Relationship between CORE-RVEF and DL-RVEF
Compared to CORE-RVEF, the correlations of DL1-
RVEF and DL2-RVEF were 0.42 and 0.87, respectively 
(Fig.  2). The results of Bland–Altman analyses for the 
two DL algorithms in comparison to the core lab analy-
sis are depicted in Fig.  2. Algorithm DL2 performed 
significantly better than DL1, as reflected by consider-
ably narrower limits of agreement: −  1 ± 11% for DL2 
versus −  1 ± 28% for DL1. Figure  3 shows histograms 
that demonstrate the frequency of absolute differ-
ences between CORE-RVEF and each of the DL-RVEF 
algorithms for Group 1 (top) and Group 2 (bottom). 
For DL1, no case in Group 1 had ≤ 5% error as a con-
sequence of the study design, while errors > 10% were 
noted in 35(35%) of cases and errors exceeding 20% 
were present in 17(17%). In contrast, for algorithm 
DL2, 44 (44%) cases in Group 1 were within 3% abso-
lute error and 70(70%) cases were within 5% error, 
while only 10 (10%) cases showed errors > 10% when 
compared to CORE-RVEF. In group 2, no case had > 5% 
error according to DL1, as a consequence of the study 
design, and DL2 resulted in a relatively small number of 
cases with larger errors.

Relationship between CORE-RV size and DL-RV size
For RVEDV and RVESV, algorithm DL1 was less accurate 
than DL2 when compared to CORE lab reference values 
(Fig.  4). For RVEDV, the correlations between CORE-
RVEDV and DL-RVEDV were 0.65 (DL1) and 0.92 (DL2). 
For RVESV, the correlations between CORE-RVESV and 
DL-RVESV were 0.54 (DL1) and 0.94 (DL2). Bland–Alt-
man analyses of comparison between CORE-RVEDV 
and DL-RVEDV resulted in smaller biases and nar-
rower limits of agreement for DL2: − 32 ± 103 ml (DL1), 
−  13 ± 37  ml (DL2). For RVESV, the bias and limits of 
agreement were − 15 ± 93 ml (DL1), − 4 ± 24 ml (DL2).

Reproducibility
The intraclass correlations for the inter- and intra-
observer variability of manual measurements were 0.90 
and 0.94 for the RVEF, 0.94 and 0.96 for the RVEDV, 
0.94 and 0.97 for the RVESV, respectively. In contrast, 
DL algorithms showed zero variability in all repeated 
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measurements, due to their fully-automated, determinis-
tic nature.

Classification into ejection fraction categories
Based on CORE-RVEF, 11 of the 100 patients had 
severely reduced RVEF (≤ 35%), 21 had mildly to mod-
erately reduced RVEF (35–50%), and 68 had preserved 
RVEF (≥ 50%) (Table  3). The accuracy of the DL1 and 
DL2 algorithms for classifying RV function into appro-
priate EF group was 0.53 and 0.80, respectively. The 
lowest rates of accurate classifications were noted in the 
middle RVEF category of 35–50% (Fig. 5).

Discussion
In this study, we aimed to determine the impact of 
including CMR images with diverse RV pathology dur-
ing the cross-validation stage on the performance of a DL 
algorithm developed to automatically quantify RV size 
and function. We found that such an approach resulted 
in substantial and clinically important improvements 
in the performance of the algorithm in patients whose 
images were difficult to handle for the previous version 
of the algorithm. These findings were in agreement with 
several previous studies [22–24].

RV dysfunction is associated with poor clini-
cal outcomes in a wide range of cardiovascular 

Table 2 Population baseline characteristics and CMR parameters 
in the clinical setting

ICM ischemic cardiomyopathy, LGE late gadolinium enhancement, LVEDV left 
ventricular end-diastolic volume, LVEDVI left ventricular end-diastolic volume 
index, LVEF left ventricular ejection fraction, LVESV left ventricular end-systolic 
volume, LVESVI left ventricular end-systolic volume index, LVM left ventricular 
mass, LVMI left ventricular mass index, NICM non-ischemic cardiomyopathy, 
RVEDV right ventricular end-diastolic volume, RVEDVI right ventricular end-
diastolic volume index, RVEF right ventricular ejection fraction, RVESV right 
ventricular end-systolic volume, RVESVI right ventricular end-systolic volume 
index

Parameters Median 
(interquartile 
range) or n (%)

Clinical Overall (n = 100)

Gender, male 41 (41%)

Age, years 61 (53–69)

Body mass index, kg/m2 28 (24–32)

 Body surface area,  m2 1.9 (1.8–2.1)

Race, %

 Black 42 (42%)

 White 44 (44%)

 Hispanic 7 (7%)

 Asian 5 (5%)

 Unknown 2 (2%)

Diagnosis, n (%)

 Coronary artery disease 56 (56%)

 Hypertension 81 (81%)

 Diabetes 42 (42%)

 Post‑heart transplant 5 (5%)

 Post‑CABG 19 (19%)

 Congenital heart disease 2 (2%)

 Pulmonary hypertension 7 (7%)

 Chronic lung disease 25 (25%)

 Obstructive sleep apnea 14 (14%)

 Cardiomyopathy 39 (39%)

 ICM 16 (16%)

 NICM 23 (23%)

CMR

 LVEDV, ml 157 (123–205)

 LVEDVI, ml/m2 80 (67–105)

 LVESV, ml 80 (52–125)

 LVESVI, ml/m2 40 (27–63)

 LVM, g 110 (88–129)

 LVMI, g/m2 56 (46–66)

 LVEF, % 49 (39–61)

 RVEDV, ml 149 (116–173)

 RVEDVI, ml/m2 75 (62–89)

 RVESV, ml 69 (50–95)

 RVESVI, ml/m2 35 (26–49)

 RVEF, % 54 (45–58)

 LGE, n (%) 43 (43%)

 Ischemic pattern 29 (29%)

 Non‑ischemic pattern 10 (10%)

 Both patterns 4 (4%)

Fig. 1 Examples of images of contours detected by the core lab 
(CORE), original deep learning (DL1) and updated deep learning (DL2) 
(shown from top to bottom). Non‑ischemic cardiomyopathy at basal 
slice
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disorders including but not limited to acute 
myocardial infarction, LV heart failure, congenital 
heart disease, arrhythmogenic cardiomyopathy, and 
pulmonary hypertension [25, 26]. RV systolic function 
is highly sensitive to changes in the afterload with small 
increases in afterload causing large decreases in stroke 
volume. Importantly, left heart disease can affect RV 
function through abnormal motion of the ventricular 
septum. Thus, quantification of RVEF, as a biomarker 
of RV systolic function, can be used to guide therapeu-
tic decision making and to assess prognosis [27–29]. 
Although RVEF is a continuous variable, RVEF cutoff 
values have been shown to have prognostic value in 
patients with dilated cardiomyopathy [28] and in other 
disease states [9]. The importance of RVEF for predic-
tion of cardiovascular outcomes was demonstrated in 
a cohort comprised of a broad range of cardiovascular 
diseases by demonstrating that each 10% drop in RVEF 
was associated with a 1.33-fold increased risk [3]. In 
fact, RVEF is associated with poor outcomes even in 
individuals with a preserved LVEF [3, 30].

In recognition of the importance of RV function, CMR 
is increasingly being used to assess the RV due to its abil-
ity to accurately quantify chamber size and function with-
out being limited by the complex RV geometry. However, 
the process remains time consuming and even fully auto-
mated, commercially available DL techniques used to 
quantify RVEF may perform poorly in some patients, and 
as a result may fail to predict clinical events [31], suggest-
ing that the current approach to developing these algo-
rithms needs to be refined. In our study, we investigated 
a new approach to selecting a candidate algorithm to be 
used in clinical practice. The biggest source of improve-
ment in this study is from the increased variability in the 
cross-validation dataset and addition of multiple perfor-
mance metrics employed to guide model selection. The 
addition of 10,161 images to include RV pathologies, 
such as pulmonary arterial hypertension, repaired tetral-
ogy of Fallot, etc. were used to revamp the cross-valida-
tion strategy. Contour overlap metrics and the ability of 
accurate clinical biomarkers and results were factored 
into the exploration of DL2 algorithm. Additionally, the 

Fig. 2 Linear regression plots (top) and Bland–Altman plots (bottom) comparing CORE and DL1 (left), CORE and DL2 (right). Red lines represent the 
regression lines, and green lines represent perfect agreement (unity lines)
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Fig. 3 Histograms showing the distribution of absolute differences between CORE right ventricular ejection fraction (RVEF) versus DL1 RVEF (left) 
and CORE RVEF versus DL2 RVEF (right) for Group 1 (top) and Group 2 (bottom). See text for details

Fig. 4 Linear regression plots (left) comparing CORE RVEDV and DL1 RVEDV (A), CORE RVEDV and DL2 RVEDV (B), CORE RVESV and DL1 RVESV (E), 
CORE RVESV and DL2 RVESV (F). Bland–Altman plots (right) comparing CORE RVEDV and DL1 RVEDV (C), CORE RVEDV and DL2 RVEDV (D), CORE 
RVESV and DL1 RVESV (G), CORE RVESV and DL2 RVESV (H). Red lines represent the regression lines, and green lines represent perfect agreement 
(unity lines). RVEDV, right ventricular end‑diastolic volume; RVESV, right ventricular end‑systolic volume
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Table 3 Population characteristics and imaging parameters in subgroups

ICM ischemic cardiomyopathy, LGE late gadolinium enhancement, LVEDV left ventricular end-diastolic volume, LVEDVI left ventricular end-diastolic volume index, 
LVEF left ventricular ejection fraction, LVESV left ventricular end-systolic volume, LVESVI left ventricular end-systolic volume index, LVM left ventricular mass, LVMI left 
ventricular mass index, NICM non-ischemic cardiomyopathy, RVEDV right ventricular end-diastolic volume, RVEDVI right ventricular end-diastolic volume index, RVEF 
right ventricular ejection fraction, RVESV right ventricular end-systolic volume, RVESVI right ventricular end-systolic volume index

●P < 0.05, RVEF ≤ 35% and RVEF 35–50%
* P < 0.05, RVEF ≤ 35% and RVEF ≥ 50%
# P < 0.05, RVEF 35–50% and RVEF ≥ 50%

Parameters Median (interquartile range) or n (%)

Clinical RVEF ≤ 35% (n = 11) RVEF35-50% (n = 21) RVEF ≥ 50% (n = 68)

Gender, male 6 (55%) 15 (71%) 38 (56%)

Age, years 59 (51–80) 63 (50–69) 61 (54–69)

Body mass index, kg/m2 29 (25–38) 26 (23–31) 29(25–32)

Body surface area,  m2 2.0 (1.8–2.4) 1.9 (1.7–2.2) 2.0 (1.8–2.1)

Race, %

 Black 8 (73%) 9 (43%) 25 (37%)

 White 2 (18%) 11 (52%) 31 (46%)

 Hispanic 1 (9%) 0 (0) 6 (9%)

 Asian 0 (0) 0 (0) 5 (7%)

 Unknown 0 (0)  1 (5%)  1 (2%)

Diagnosis, n (%)

 Coronary artery disease 4 (36%) 10 (48%) 42 (62%)

 Hypertension 8 (73%) 17 (81%)  56 (82%)

 Diabetes 6 (55%) 7 (33%) 29 (43%)

 Post‑heart transplant 0 (0) 1 (5%) 4 (6%)

 Post‑CABG 2 (18%) 2 (10%) 15 (22%)

 Congenital heart disease 0 (0) 0 (0)  2 (3%)

 Pulmonary hypertension 1 (9%) 3 (14%) 3 (4%)

 Chronic lung disease 0(0)● 11 (52%)# 14 (21%)

 OSA 1 (9%) 1(5%) 12 (18%)

 Cardiomyopathy 10 (91%)* 12 (57%)# 17 (25%)

 ICM 4 (36%)* 4 (19%) 8 (12%)

 NICM 6 (55%)* 8 (38%)# 9 (13%)

CMR

 LVEDV, ml 238 (179–310)* 166 (136–218) 147 (116–192)

 LV DVI, ml/m2 124 (85–139)* 97 (74–124)# 71 (64–97)

LVESV, ml 176 (128–234)●* 111 (72–134)# 65 (47–100)

 LVESVI, ml/m2 93 (62–105)●* 55 (38–75) # 32 (24–52)

 LVM, g 115 (103–226) * 125 (107–140)# 101 (83–122)

 LVMI, g/m2 62 (54–93)* 66 (54–76)# 52 (44–61)

 LVEF, % 27 (22–30)●* 43 (36–47)# 54 (44–63)

 RVEDV, ml 190 (148–224)* 164 (124–191) 134 (113–164)

 RVEDVI, ml/m2 87 (74–115)* 85 (74–95)# 71 (61–81)

 RVESV, ml 131 (108–161)* 95 (75–112)# 59 (46–73)

 RESVI, ml/m2 65 (54–77)●* 50 (42–54)# 30 (25–36)

 RV EF, % 27 (26–32)●* 43 (40–46)# 58 (53–61)

 LGE, n (%) 8 (73%)●* 9(43%) 26 (38%)

 Ischemic pattern 1 (9%)●* 6 (29%) 22 (32%)

 Non‑ischemic pattern 5 (46%)* 2 (10%) 3 (4%)

 Both patterns 2 (18%) 1 (5%) 1 (2%)
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strict enforcement of a spatiotemporal consistency in the 
predicted outputs was adopted to post-processing in all 
stacks, which ensured the removal of outliers in the event 
that contours are predicted above the basal slice or below 
the apex.

Although other studies have examined the accuracy 
of DL algorithms to quantify RVEF in comparison to 
a human expert [12, 32, 33], they did not examine the 
clinical implications of any specific sources of error. Rah-
man et  al., reported high levels of agreement between 
the DL algorithm and manual measurement of RVEF, 
but the focus was limited to the healthy population [34]. 
In a study by Hakim et  al., when comparing automated 
RVEF measurements to a human expert generated refer-
ence values, the DL algorithm showed an r-value of 0.76. 
The major source of error has typically been explained by 
poor automated segmentation at the basal slice, as was 
observed in prior studies [35]. In our prior study [15], 
we compared manual RVEF by a clinician to automated 
RVEF measurements made by three DL methods devel-
oped using publicly available CMR datasets and found 
that all three DL methods performed relatively poorly in 
a significant proportion of the patients.

In this current study, we selected from our prior study 
[15] the 100 cases, in which the DL algorithm performed 
the worst, and found that an algorithm developed using 
a new approach with enhanced cross-validation resulted 
in considerable improvement in its clinical performance. 
Indeed, measurements of RVEDV, RVESV, and RVEF 
made using the improved algorithm correlated bet-
ter with the reference measurements. This increased 

correlation translated into more accurate classification of 
RVEF function. However, it is important to note that the 
correlation between the core laboratory measurement 
and the DL algorithm was not perfect, 10% of cases still 
had a > 10% absolute error in the RVEF measurement, 
and 20% of patients were still categorized into an incor-
rect RVEF group. This emphasizes the need for addi-
tional algorithmic improvements in the future. Detecting 
the RV endocardial contour is challenging for both the 
clinician and automated DL algorithms. This can be 
attributed to the unique morphology, thinner myocar-
dium, and higher trabeculation burden of the RV cham-
ber. The basal short-axis slice is most often inaccurately 
segmented by both an expert and by the DL algorithms, 
particularly at the boundary of the pulmonary artery 
and right atrium. Furthermore, the RV apex is frequently 
incorrectly identified by the DL algorithms in cases of 
pathological RV morphology. Another challenge for the 
DL-algorithms for calculating RVEF is the accurate iden-
tification of the ED and ES frames (Fig. 6). In fact, some 
algorithms require end-diastole and end-systole to be 
pre-selected to overcome this challenge [36].

Limitations
This was a single-center study performed in a relatively 
small number of patients. Although we demonstrated 
considerable improvement of algorithm performance in 
our cohort, it is possible that it may not perform as well 
on images acquired using other scanners or other CMR 
image acquisition techniques. Additionally, our study 
cohort was selected from patients referred for a CMR 

Fig. 5 Confusion matrices showing accuracy of DL‑RVEF to correctly categorize into clinically meaningful RVEF groups as defined by the RVEF by 
core lab (CORE‑RVEF). Across true label rows, the numbers in the boxes represent the number and percentage of labels classified for each group. 
Color intensity corresponds to percentage, see heat map on the right
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stress test and was not enriched with patients known to 
have more complex RV anatomy. Thus, it is unknown 
how well this current algorithm would perform when it 
encounters more complex clinical cases, such as cyanotic 
congenital heart disease and other distorted anatomies. 
Also, one could view as a limitation the fact that this 
study was performed on stress rather than resting CMR 
images. There were three reasons for this choice: (1) vas-
odilator stress is a common indication for CMR imaging; 
(2) we suspected that the algorithms may not perform as 
well in this situation, since the images used to quantify 
EF are usually acquired after the administration of a gad-
olinium-based contrast agent; and (3) the previous study, 
in which the original algorithm did not perform well in 
this subset of patients, was performed on their stress 
CMR images, and therefore testing the hypothesis that 
the retrained algorithm would perform better had to be 
done on the same images.

Conclusions
The use of a diverse dataset during the cross-validation 
phase of DL algorithm development resulted in a con-
siderable improvement in the accuracy of the automated 
analysis of RV volumes and RVEF in patients in whom 
the previous version of the software did not perform 
well. However, despite the improvement, the current fully 
automated algorithm is still prone to errors when com-
pared to a core laboratory measurement due to intrinsic 
anatomical challenges and therefore requires verification 
by an experienced reader.
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