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Abstract 

Background:  Quantitative assessment of dynamic lung water accumulation is of interest to unmask latent heart fail‑
ure. We develop and validate a free-breathing 3D ultrashort echo time (UTE) sequence with automated inline image 
processing to image changes in lung water density (LWD) using high-performance 0.55 T cardiovascular magnetic 
resonance (CMR).

Methods:  Quantitative lung water CMR was performed on 15 healthy subjects using free-breathing 3D stack-of-
spirals proton density weighted UTE at 0.55 T. Inline image reconstruction and automated image processing was 
performed using the Gadgetron framework. A gravity-induced redistribution of LWD was provoked by sequentially 
acquiring images in the supine, prone, and again supine position. Quantitative validation was performed in a phan‑
tom array of vials containing mixtures of water and deuterium oxide.

Results:  The phantom experiment validated the capability of the sequence in quantifying water density (bias ± SD 
4.3 ± 4.8%, intraclass correlation coefficient, ICC = 0.97). The average global LWD was comparable between imaging 
positions (supine 24.7 ± 3.4%, prone 22.7 ± 3.1%, second supine 25.3 ± 3.6%), with small differences between imaging 
phases (first supine vs prone 2.0%, p < 0.001; first supine vs second supine − 0.6%, p = 0.001; prone vs second supine 
− 2.7%, p < 0.001). In vivo test–retest repeatability in LWD was excellent (− 0.17 ± 0.91%, ICC = 0.97). A regional LWD 
redistribution was observed in all subjects when repositioning, with a predominant posterior LWD accumulation 
when supine, and anterior accumulation when prone (difference in anterior–posterior LWD: supine − 11.6 ± 2.7%, 
prone 5.5 ± 2.7%, second supine − 11.4 ± 2.9%). Global LWD maps were calculated inline within 23.2 ± 0.3 s following 
the image reconstruction using the automated pipeline.

Conclusions:  Redistribution of LWD due to gravitational forces can be depicted and quantified using a validated 
free-breathing 3D proton density weighted UTE sequence and inline automated image processing pipeline on a 
high-performance 0.55 T CMR system.
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Background
Pulmonary edema, or lung water, is the accumulation of 
fluid that has leaked from the vasculature into the pulmo-
nary interstitial space or alveoli, which may cause dysp-
nea and exercise intolerance [1, 2]. Exercise intolerance 
due to lung water is a key feature in at least 50% of heart 
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failure patients [3, 4], often manifesting as a dynamic 
process at early stages of the disease with left ventricu-
lar filling pressures and lung water densities that are 
normal at rest but increased during physical activity [5]. 
Furthermore, lung water is predictive of cardiac events 
in patients at risk of developing or with confirmed heart 
failure [6–8]. Quantification and dynamic assessments of 
lung water density (LWD) are therefore valuable for eval-
uation of this patient cohort.

Clinically available tests to assess LWD include chest 
X-ray, computed tomography (CT), ultrasound, and heart 
catheterizations [9–11]. These exams are invasive or 
expose patients to ionizing radiation, and in addition, are 
only qualitative or semi-quantitative. Recent studies have 
proposed cardiovascular magnetic resonance (CMR) 
as a promising noninvasive, ionizing radiation-free, and 
quantitative method to measure LWD, using half-Fou-
rier single-shot turbo spin-echo (HASTE) or ultrashort 
echo time (UTE) sequences at 1.5  T or 3  T [6, 12, 13]. 
These methods, however, rely on offline image processing 
using either observer-dependent manual segmentations 
or automated but time-consuming region-growing algo-
rithms, and their capability to image dynamic changes in 
lung water has not yet been studied.

In this study, we develop and validate a method 
to image lung water using a 3D free-breathing UTE 
sequence on a high-performance low field strength 0.55 T 
CMR system [14]. High-performance 0.55 T CMR is well 
suited for structural lung imaging due to the improved 
field homogeneity resulting in reduced artifacts from 
susceptibility gradients, and thus improved parenchy-
mal imaging [15–18]. We also implement a fast and fully 
automated neural network-based inline image processing 
pipeline, allowing LWD maps to be displayed directly on 
the CMR scanner interface. Water density quantification 
is validated using a phantom. As a precursor to assess-
ment of dynamic lung water measurements during exer-
cise stress, we aimed to assess a regional redistribution of 
lung water and therefore deployed our method to image 
a gravity-induced redistribution of lung water in healthy 
subjects in supine and prone positions.

Methods
Study population
Imaging was approved by the local Institutional Review 
Board (ClinicalTrails.gov identifier NCT03331380) with 
written informed consent obtained from all participants. 
We prospectively performed research CMR examinations 
in 15 healthy subjects (29 ± 7 years, 6 women).

Imaging protocol
Imaging was performed on a prototype high-perfor-
mance 0.55  T CMR system (prototype MAGNETOM 

Aera, Siemens Healthineers, Erlangen, Germany) using 
phased-array receiver coils retuned for 0.55  T, includ-
ing an 18-channel spine array and a 6-channel body coil 
[15]. LWD was measured with a modified version of a 
previously described 3D free-breathing proton density 
weighted stack-of-spirals golden-angle UTE spoiled-gra-
dient echo pulse sequence [14]. Typical imaging param-
eters were TE/TR/θ = 0.56  ms/9  ms/1°, stack-of-spirals 
with 171 interleaves, spiral readout duration 5.0 ms, field 
of view 450 × 450 × 252 mm, 3.5 mm isotropic resolution, 
72–80 coronal slices covering both lungs, and slice over-
sampling factor 11.1%. Acquisition time was ~ 2.5  min, 
but varied slightly with anterior–posterior field-of-view 
(i.e. number of slices). Superior-inferior navigator read-
outs were acquired every 144 ms. The navigator was used 
to extract the respiratory signal, which was used to bin 
and reconstruct 40% of the data of the most stable respir-
atory phase. Image reconstruction was performed in the 
Gadgetron reconstruction framework using the pipeline 
described in Javed et al. [14].

A gravity-induced redistribution of lung water was 
achieved by repositioning subjects between the supine 
and prone position. The study protocol consisted of three 
phases (Fig. 1), In the first phase, imaging was performed 
in a supine position, the second in a prone position, and 
in the third phase imaging was repeated in a supine posi-
tion. The subject was removed from the magnet bore for 
repositioning and coil placement. In each phase, shim-
ming, localizers and four 3D UTE lung water images 
were acquired.

To control for potential variations in pulmonary blood 
flow between positions, main pulmonary artery flow was 
measured using a free-breathing phase contrast gradi-
ent echo sequence with pulse triggering. Typical imag-
ing parameters were TE/TR/θ = 4.19  ms/27.44  ms/30°, 
VENC 200 cm/s, field of view 400 × 400 mm, resolution 
2.1 × 2.1 × 6 mm, bandwidth = 299  Hz/Px. Flow images 
were not acquired in one subject for technical reasons. 
Cardiac output was quantified from the flow images 
using Segment, by semi-automatically delineating the 
main pulmonary artery over time [19]. This analysis was 
not part of the inline image processing pipeline.

Phantom validation
Quantitative accuracy and test–retest validation of the 
proton density weighted sequence were performed 
using a custom phantom of 10 vials containing a 50 ml 
mixture of distilled water and deuterium oxide, which 
were immersed in a water filled container. Water con-
centrations ranged between 10 and 100% in increments 
of 10%. Deuterium oxide provides no CMR signal, 
meaning that the proton densities measured should be 
directly proportional to the water content in each vial. 
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The phantom was imaged three times on different days 
within 2  weeks, using the same sequence and imaging 
parameters as for the study participants.

Phantom images were analyzed using the software Seg-
ment (Medviso AB, Lund, Sweden) [20]. Regions of inter-
est contouring each vial were placed in a central slice, to 
avoid partial volume effects (Fig.  2A). Water densities 

Fig. 1  Schematic illustration of the imaging protocol, divided into three phases. Each phase included acquisition of localizers (Loc), two proton 
density weighted (PDw) images, one main pulmonary artery flow, followed by two additional proton density weighted images. Subjects were in the 
supine position in the first phase, in the prone position for the second phase, and back into a supine position for the third phase. Repositioning of 
the subject, coils, running calibrations and localizers took approximately 6 min

Fig. 2  Quantitative phantom validation in array of vials with varying water and deuterium oxide concentrations. A CMR image with analyzed 
regions of interests (white circles). B Correlation plot between known water concentrations used to make the phantom and CMR-estimated water 
concentrations relative the 100% water vial, showing a linear relation. C Bland–Altman plot, showing a low bias between the metrics. Three test–
retest measurements were made on different days. ICC intraclass correlation coefficient
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were calculated as the ratio of the average signal inten-
sities in each vial and the average signal intensity in the 
vial containing 100% water. Calculated and known water 
densities from all phantom experiments were compared.

Lung segmentation
Automated lung segmentation was performed using a 
trained convolutional neural network which was spe-
cifically trained for UTE lung images acquired at 0.55 T. 
The network had a residual U-net semantic segmenta-
tion architecture which have previously been used suc-
cessfully in biomedical imaging applications, offering 
improved performance for deeper networks with fewer 
parameters and overcoming degradation problems [21–
25], and was developed in PyTorch based on the Gadget-
ron AI for CMR Imaging repository (Fig. 3) [23, 26].

Model training was performed using lung images from 
114 human subjects and 23 swine, acquired with vari-
ous T1 and proton density weighted (flip angle 20° and 

1°, respectively) stack-of-spirals ultrashort echo time 
sequences using the high-performance 0.55  T CMR 
system. Lung segmentation was performed semi-auto-
matically with an active contour algorithm followed by 
manual corrections, avoiding major vasculature and 
airways [2]. A total of 467 3D images (~ 16  k 2D image 
slices) from healthy subjects (n = 40), lymphangioleiomy-
omatosis patients (n = 74), and swine (n = 23) were used 
in both coronal and sagittal slices with varying spatial 
resolution. The dataset was randomly divided into train-
ing and validation sets, where 80% of image-mask pairs 
were used for training and the remaining 20% were used 
for validation. Furthermore, a separate test set of 761 
3D images (~ 43,500 2D slices) from 31 healthy subjects 
and 9 swine was prepared to evaluate the segmentation 
model. The data included for lung water measurements 
in this study was not included in the training. Imaging 
used for U-Net training was approved by the local Insti-
tutional Review Board and Institutional Animal Care and 

Fig. 3  Diagram of the training workflow and the 2D residual U-Net architecture. Data was augmented to improve generalization of the network. 
Input image slices pass through three downsampling layers followed by a bridge layer and four upsampling layers. Each block in the Gadgetron 
U-Net diagram represents two cycles of batch normalization, convolution layer, and leaky ReLU activation. The final layer was a 1 × 1 convolution 
used to convert the output channels into a probability map, and no nonlinearity function was added after the output convolution. The U-Net 
outputs a probability map, which was then thresholded to create 2D lung segmentation masks
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Use Committee, with written informed consent obtained 
from all human participants.

The network was trained with 2D image slices as input. 
Images and lung segmentation masks were up-sampled 
to achieve a consistent pixel resolution between 1 and 1.5 
mm2 for all images. Data augmentation was performed by 
adding random permutations, blurring, scaling, rotating, 
and noise to improve generalization. During training, the 
performance of the network was evaluated through vali-
dation loss calculated with Soft-Jaccard loss function and 
the Dice coefficient. A hyperparameter sweep was per-
formed to determine the batch size (32 or 64), the num-
ber of up-sampling and down-sampling layers (2, 3 or 4), 
and the number of block computations for each layer (2, 
3, 4, 6, 8, or 12) that resulted in the lowest validation loss. 
One block computation consists of two cycles of batch 
normalization, convolution, and leaky ReLU activation. 
Model performance was evaluated in the test set using 
the Dice coefficient and quantified lung volume.

Inline image analysis
A fully automated image processing pipeline that derives 
a 3D pixel-wise LWD map was implemented in Matlab 
(Mathworks, Natick, Massachusetts, USA) and is illus-
trated in Fig. 4.

First, lung segmentation was performed using the 
trained neural network and a circular 12.5 cm2 region-of-
interest (ROI) was automatically placed in the liver. The 
liver ROI was placed in the slice pertaining to the cen-
troid of the right lung segmentation. The in-plane posi-
tioning was defined through the center point of the circle, 
which was placed 8.75 mm below the bottom of the right 
lung, in the column of the centroid of the segmented 
right lung in 3D (Fig. 4).

Second, spatial normalization to avoid surface coil 
shading was performed by dividing the image by a nor-
malization map that was fitted to the signal intensities in 
the body, as previously proposed by Meadus et  al. [12]. 
Signal intensities pertaining to the body were defined by 
thresholding the image to the average signal intensity in 
the imaged 3D volume, and subsequently removing the 
segmented lung tissue. The normalization map was fit-
ted and interpolated over the body and lungs slice-by-
slice in the coronal orientation, using least square linear 
regression with Tikhonov regularization and an L-curve 
method derived smoothness parameter [12, 27, 28].

Third, pixel-wise 3D LWD maps were calculated as the 
ratio of lung tissue signal intensities and the average liver 
signal intensity, with the assumption that the hepatic 
water density is 70% [6, 29]. The average global LWD 
were reported for all subject positions and sequence 

Fig. 4  The automated image processing pipeline. 1, 2 The acquired image was reconstructed inline using the Gadgetron image reconstruction 
framework. 3 Lung segmentation (red) was performed using a trained U-Net. A region-of-interest (ROI) in the liver was automatically placed 
under the right lung (white circle) for quantitative purposes. The positioning of the liver ROI was determined from the centroid of the right lung 
segmentation (blue circle), with the liver ROI was placed in the coronal slice passing through the centroid (blue dashed line). The positioning of 
the liver ROI was placed 8.75 mm below the bottom of the in-plane lung segmentation (black dashed line) in the centroid column (blue line). 4 
Sample of a coil spatially normalized resliced sagittal slice of a healthy subject in the supine position. 5 Quantitative pixel-wise lung water density 
(LWD) maps relative 70% of the signal intensity in the liver were derived. To enable regional analysis, anterior, mid, and posterior segments were 
defined (black), that were derived by assigning each segment an equal number of coronal slices. 6 Reconstructed images were streamed back and 
displayed to CMR host, including a LWD map overlayed on the acquired image
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repetitions. Global LWD derived with the fully auto-
mated pipeline were compared to results using manually 
performed lung segmentations and placement of the liver 
ROI.

The image processing pipeline was implemented in 
Matlab (Mathworks) and integrated with the Gadgetron 
framework using Gadgetron’s external interface, allowing 
inline processing on the CMR scanner. Image reconstruc-
tion and analysis were performed on a dual-socket Xeon 
E5-2600 computer with 512  GB RAM and 3x NVIDIA 
QUADRO RT X 8000  s (48  GB vRAM). To enable fur-
ther offline analysis and potential manual corrections, the 
pipeline was also implemented as a plugin to the medi-
cal image analysis software Segment v3.2 which is freely 
available for research purposes [20]. Both implemen-
tations are available open source (https://​github.​com/​
NHLBI-​MR/​lung_​water_​pipel​ine).

Lung water dynamics
The gravity-induced redistribution of lung water was vis-
ualized in LWD maps derived from images in the supine 
and prone positions. The isotropic 3D volumes were res-
liced into the sagittal view for assessment of the ante-
rior–posterior LWD gradient. Regional changes of lung 
water distribution in the anterior–posterior direction 
were assessed by calculating the average LWD in three 
segments of the anterior, mid, and posterior parts of the 
lungs, with each segment containing the same number of 
coronal slices with lung tissue in them.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 
9 (GraphPad Software, Inc, La Jolla, California, USA). 
Continuous variables were reported as mean ± standard 
deviation (SD). Global and regional LWD, lung volumes, 
and cardiac output between positions were compared 
using one-way ANOVA. Comparisons between anterior 
and posterior LWD within the same image was assessed 
with student’s t-test. Agreement between measured and 
known water densities in the phantom were described 
with intraclass correlation coefficient (ICC) and Bland–
Altman analysis. Pearson correlations (R2) were reported. 
Levels of agreement for ICC was defined as poor (0.00–
0.30), weak (0.31–0.50), moderate (0.51–0.70), strong 
(0.71–0.90), and excellent (0.91–1.00) [30]. Threshold for 
statistical significance was p < 0.05.

Results
Phantom validation
Relative water concentration measured in three repeti-
tions by the proton density weighted UTE sequence dem-
onstrated a linear relationship (y = 1.07x − 0.73, R2 = 0.98, 
p < 0.001) with excellent agreement (ICC = 0.97) and low 

bias (4.3 ± 4.8%) compared to known water concentra-
tions (Fig. 2B, C). The ICC of each repeated experiment 
was 0.96, 0.99 and 0.98, respectively. This validates that 
the sequence is proton density weighted, suggesting 
that the water density quantification from the CMR 
images is accurate across a range of proton densities, and 
reproducible.

Lung segmentation
The U-Net selected for lung segmentation had 3 down 
sampling layers, 1 branch layer, and 4 up sampling lay-
ers, and with a batch size of 64. The trained network had 
a mean validation loss of 0.096 and a Dice coefficient of 
0.93 ± 0.17 in the validation set, indicating good perfor-
mance compared with the semi-automated method with 
manual corrections.

When evaluated in the separate test dataset of 761 3D 
images, the final segmentation network had a dice coef-
ficient of 0.93 ± 0.19, indicating comparable performance 
to the semi-automated segmentation. The average dif-
ference in lung volume was − 0.11 ± 0.14 L between the 
semi-automated and neural network segmentations. 
The U-Net was able to create accurate masks, with 
the exclusion of major blood vessels, and successfully 
exclude image slices where no lung tissue was present 
(Fig.  5). Average model inference time to segment a 3D 
lung image with the U-Net was 1.07 ± 0.1  s. Compared 
to approximately 10 min required by the active contour 
algorithm with manual corrections, the U-Net demon-
strates a significant decrease in processing time. Lung 
volumes quantified from the U-net segmentations in the 
first supine images were smaller than in the prone images 
(2.6 ± 0.9 L vs 2.7 ± 0.9 L, p < 0.001), and there was no 
difference between the first and second supine images 
(2.6 ± 0.9 L vs 2.5 ± 1.0, p = 0.29).

Inline image analysis
Inline calculation of LWD maps was successful in all 
15 healthy subjects. The lower airways were partially 
included in the lung region in all 15 subjects and required 
offline manual correction in Segment. The misclassi-
fied airway pixels amounted to 0.37 ± 0.36% of the total 
amount of pixels annotated as lung in the automated seg-
mentation. The global LWD using the inline automated 
processing and manually corrected segmentations did 
not differ (24.2 ± 3.5% vs 24.5 ± 3.5%, p = 0.16). The liver 
ROI was accurately positioned in all 15 subjects. Image 
reconstruction and image analysis required 28.1 ± 2.5  s 
and 23.2 ± 0.3 s, respectively. The 23 s for image analysis 
included ~ 1 s of U-net inference and ~ 9 s to stream data 
between Matlab and Python interfaces, and ~ 13  s for 
spatial normalization including the L-curve smoothing 
parameter optimization. The mean optimized L-curve 

https://github.com/NHLBI-MR/lung_water_pipeline
https://github.com/NHLBI-MR/lung_water_pipeline
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smoothing parameter used for the Tikhonov regulariza-
tion was 40.8 ± 0.12. This low parameter value variation 
suggests that the smoothing parameter does not need to 
be optimized for each image acquired with the same sys-
tem and sequence parameters, which would reduce the 
time required for image analysis.

Lung water density quantification
The supine and prone imaging protocol was feasible 
in all included study participants. The average global 
LWD was comparable between imaging positions 
(supine 24.7 ± 3.4%, prone 22.7 ± 3.1%, second supine 
25.3 ± 3.6%) (Fig.  6A). There were small but significant 
differences in global LWD between the three imaging 
phases (first supine vs prone 2.0%, p < 0.001; first supine 
vs second supine − 0.6%, p = 0.001; prone vs second 
supine − 2.7%, p < 0.001). The agreement in global LWD 
between the first and following three acquired images 
in each position was excellent (ICC = 0.97, bias ± SD 
− 0.17 ± 0.91%). This demonstrates that the proposed 
LWD metric is repeatable. Global and regional lung 
water densities over all phases and repetitions are 

summarized in Table 1. Global lung water densities were 
slightly higher in the left lung compared to the right lung 
(24.0 ± 3.4 vs 24.9 ± 4.3, p < 0.001).

Gravity‑induced lung water redistribution
We observed a well-defined redistribution of lung water 
alternating between the posterior parts of the lungs 
when imaged in a supine position, to the anterior parts 
when prone (Fig. 7). This change in lung water distribu-
tion illustrates the effect gravity has on the pulmonary 
fluid distribution. The variation between positions was 
quantified using the difference in LWD between the ante-
rior and posterior lung regions (supine − 11.6 ± 2.7%, 
p < 0.0001; prone 5.5 ± 2.7%, p < 0.001; second supine 
− 11.4 ± 2.9%, p < 0.001) (Fig.  6B–D). Repositioning of 
the subject followed by shimming and localizers took on 
average 6  min. Lung water redistribution had occurred 
before the first image in each new position, and no 
evolution in LWD was observed during four repeated 
measurements. The variation of the anterior–poste-
rior LWD difference between the first and following 
three acquired images was small in all imaging positions 

Fig. 5  Representative segmentations from the U-Net algorithm from four slices in four healthy subjects. Red shows expected output mask, green 
shows model output mask, and orange shows the overlap between the two masks. The U-Net created segmentation masks are comparable to 
the expected output (volunteers 1, 2) and successfully identified image slices where no lung tissue was present (volunteer 3). However, the model 
mistakenly identified the lower airways as lung in 0.37% of the annotated pixels (volunteer 4)
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Fig. 6  Quantified global lung water density (LWD) in 15 healthy subjects. A Global LWD was varied slightly between imaging positions. Regional 
LWD was higher in the posterior lungs when supine (B, D) and in the anterior lungs when prone (C), indicating that a redistribution of lung water 
due to gravity can be depicted. **p < 0.01; ****p < 0.0001

Table 1  Quantified lung water densities

Values reported as mean ± standard deviation

LWD, lung water density

Repetition number Healthy subjects (n = 15)

Phase 1, supine Phase 1, prone Phase 3, supine

Global LWD (%) 1 24.3 ± 3.6 22.5 ± 3.2 25.4 ± 4.0

2 24.7 ± 3.5 22.7 ± 3.3 25.2 ± 3.5

3 24.8 ± 3.6 22.6 ± 3.1 25.3 ± 3.5

4 24.9 ± 3.4 22.9 ± 3.2 25.2 ± 3.6

LWD, anterior lungs (%) 1 21.2 ± 3.6 19.7 ± 3.4 19.9 ± 2.9

2 21.2 ± 3.8 19.8 ± 3.3 19.9 ± 2.8

3 21.3 ± 3.5 19.8 ± 3.2 20.0 ± 3.1

4 21.4 ± 3.6 19.8 ± 3.3 20.0 ± 3.3

LWD, mid lungs (%) 1 23.5 ± 3.6 21.8 ± 2.7 22.0 ± 2.4

2 23.5 ± 3.5 21.9 ± 2.5 22.1 ± 2.3

3 23.5 ± 3.4 21.9 ± 2.4 22.1 ± 2.5

4 23.6 ± 3.4 22.0 ± 2.4 22.2 ± 2.7

LWD, posterior lungs (%) 1 28.1 ± 7.8 26.3 ± 4.9 27.2 ± 5.8

2 28.2 ± 7.2 26.7 ± 5.0 27.3 ± 5.9

3 28.3 ± 7.6 26.9 ± 5.1 27.2 ± 5.7

4 28.4 ± 7.5 27.0 ± 5.1 27.2 ± 5.7
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(supine 0.08 ± 0.7%, prone 0.44 ± 1.0%, second supine 
− 0.02 ± 0.5%). This suggests that the redistribution of 
lung water due to gravity occurs more rapidly than the 
CMR images were acquired in this study. Cardiac out-
put did not differ between imaging positions (supine 
6.1 ± 1.0  cm/s; prone 6.2 ± 1.1  cm/s, p = 0.80; second 
supine 6.2 ± 1.3 cm/s, p = 0.89).

Discussion
This study presents a method to quantify lung water den-
sity in ~ 2.5  min, using a free-breathing stack-of-spirals 
3D UTE CMR sequence at 0.55 T with isotropic resolu-
tion along with a fully-automated, inline, image-process-
ing pipeline. The method was capable of measuring the 
redistribution of lung water due to gravity, and can eas-
ily be added to a CMR exam. The accuracy and repeat-
ability of the method was validated in a phantom, and the 
capability to depict a redistribution in LWD was dem-
onstrated by imaging healthy subjects in the supine and 
prone position. Image processing was performed inline 
using the Gadgetron framework, with Matlab integrated, 
and required ~ 23 s after image reconstruction.

Inline image processing
A streamlined image analysis process is important for 
widespread clinical adoption of a novel imaging test. 
Therefore, we proposed an automated, inline image 

segmentation and lung water quantification that displays 
results directly on the scanner, enabling on-the-spot 
physician evaluation without need for additional image 
analysis, likely using third-party software. Accurate lung 
segmentation is an important processing step to quan-
tify global and regional LWD, and we implemented and 
trained a neural network specifically for this task as deep-
learning algorithms are robust and reduces processing 
times. By comparison, previously proposed region-grow-
ing algorithms may fail in images with low contrast, or 
manual segmentations are time-consuming [12, 13]. The 
neural network performed reliably in the 15 healthy sub-
jects in this study, but partially included the lower air-
ways into the lung segmentation. This misclassification 
did however not impact the global LWD quantification, 
as the number of pixels pertaining the airways was neg-
ligible (~ 0.37%) and there was no fluid in the airways. 
This misclassification by the U-net is explained by the 
anatomical proximity of the lungs and airways, as well 
as their low signal intensities compared to surrounding 
musculoskeletal tissues. Moreover, the U-net was mainly 
trained on images of healthy volunteers and patients with 
lymphangioleiomyomatosis, and may therefore perform 
inferiorly on other cohorts with different pulmonary fea-
tures such as pleural effusion. Retraining the network 
using more data, including additional patient cohorts, 
may further improve the robustness and versatility of 

Fig. 7  Lung water density (LWD) maps derived from images in the supine and prone positions in four sagittal slices from an example healthy 
subject. Posterior part of the lung is to the left, and anterior to the right, demonstrating a gravity-induced redistribution of lung water. The LWD was 
predominantly accumulated in the posterior lungs when supine and in the anterior lungs when prone
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the segmentations. The neural network provided a fast, 
accurate, and robust lung segmentation (~ 1  s), which 
enabled estimation of global LWD in parity with manual 
image processing. Although inline processing is valuable 
in the clinical setting, the implementation of the image 
analysis pipeline into Segment is also powerful as it sup-
ports offline analysis that allows for potential manual 
corrections and is useful in the process of research and 
development.

Quantitative lung water imaging
Quantitative proton density weighted UTE imag-
ing requires a stable signal reference with known water 
density [31]. Thompson et  al. have previously proposed 
hepatic tissue as signal reference, by assuming a 70% 
water density in the liver [6]. The liver is always within 
the field-of-view, and it is straight forward to automati-
cally detect within the acquired image after performing 
lung segmentation. Receiver coil shading correction is 
another important aspect to achieve quantitative CMR. 
We performed coil shading as previously proposed by 
Meadus et  al., using a spatial signal fit with Tikhonov 
regularization directly on the acquired UTE images, as 
a part of their image post processing [12]. This approach 
is suitable for inline image processing as it only requires 
the acquired image itself and is fast. The time to perform 
spatial normalization could be reduced further if the 
smoothing parameter was set to a fixed value rather than 
optimized for each acquired image, but further studies 
are warranted to determine if this would be suitable over 
a variety of patient cohorts. Another approach would be 
to perform coil shading normalization utilizing separate 
body and surface coil acquisitions, which would provide 
actual coil signal profiles. The quantified global LWD in 
healthy volunteers in this study (first supine 24.7%) was 
comparable with previously reported findings by Mea-
dus et al. using a UTE yarnball sequence at 3 T (28.6%) 
[12], but higher than findings by Thompson et  al. using 
a HASTE sequence at 1.5 T (16.6%) [6]. Direct compari-
sons of reported LWD values are however challenging, 
as results may vary with different sequences, contrast 
weighting, signal references, and lung segmentation 
strategies.

Dynamic lung water CMR
Quantification of lung water dynamics may provide a fast 
and noninvasive clinical test that can be used to diag-
nose and monitor patients, and could potentially predict 
heart failure with preserved ejection fraction in patients 
who have elevated left ventricular filling pressures and 
pulmonary congestion. In our study, the changes in 
lung water were gravity-induced by imaging subjects in 
the supine and prone positions. This is not expected to 

be a clinically relevant test for assessment of dynamic 
changes in LWD, but was rather performed for validation 
purposes as a way to evaluate the method’s sensitivity to 
redistribution of lung water. Accordingly, a redistribution 
was observed upon repositioning each subject, where the 
predominant LWD accumulation shifted from the poste-
rior parts of lungs in the supine position to the anterior 
when prone. The low difference in global LWD between 
positions was expected, as images were acquired under 
similar physiological conditions, and was further cor-
roborated by consistency in cardiac output in the supine 
and prone positions. This confirms previous findings by 
Wieslander et  al. [32]. The reason for the small but sig-
nificant increase of lung water between the first and 
second supine imaging phases is unknown, and may be 
attributed to a slight lung water accumulation after lay-
ing down for approximately 1 h. The slightly higher 
lung water density in the left lung compared to the right 
lung confirms previous findings by Meadus et al., and is 
explained by its proximity to the heart and major vascu-
lature [12].

A more physiologically relevant assessment of dynamic 
changes in lung water is during exercise. Lung water 
measurements during exercise could potentially detect 
latent heart failure at early stages of the disease where 
filling pressures and lung water are normal at rest, but 
markedly increased during exercise. Recently, Burrage 
et al. [13] imaged heart failure patients and healthy con-
trols directly after exercising for 6 min using a CMR-com-
patible ergometer. That study demonstrated significant 
stress-induced increase in lung water of up to 4.4% and 
6.4% in patients with heart failure and amyloidosis, 
respectively. The exercise-induced effects on regional 
lung water distribution were however not studied in their 
single 2D axial slice of the lungs, and we anticipate that 
our proposed 3D self-gated UTE implementation which 
allows global and regional assessment of LWD and pro-
vides stable measurements, may enable a more compre-
hensive assessment of lung water that is well-suited for 
application in conjunction with exercise. The lung water 
reabsorption time after exercise recovery is expected to 
vary across patient cohorts depending on filling pressures 
and amount of transudate fluid [33], posing requirements 
on the acquisition time of dynamic lung water imaging 
technique during exercise. Agostini et al. have previously 
reported a decreased alveolar-capillary membrane con-
ductance in heart failure patients at 2 min post exercise 
but that varies with heart failure severity [33], suggesting 
that our 2.5 min 3D acquisition might need to be further 
optimized and shortened in order to observe exercise-
induced lung water dynamics. Possible avenues to allow 
for shorter acquisition times includes increasing the 
amount of data utilized for the respiratory-binned image 
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reconstruction into a stable phase from an expected rapid 
respiratory cycle, inclusion of data from the entire res-
piratory cycle following motion correction [34], or modi-
fying reconstruction for additional undersampling. For 
acquisition during exercise, we anticipate that the respir-
atory navigator with temporal resolution of 144  ms will 
perform well for assessment of rapid respiratory rate and 
will also detect bulk motion during exercise. Such future 
studies may enhance the understanding of pathophysi-
ological mechanisms and treatments in patient cohorts 
presenting with pulmonary edema.

Low‑field strength lung CMR
The proposed image acquisition in our study was devel-
oped, optimized, and validated specifically for high-per-
formance 0.55 T CMR. This novel system was created by 
ramping down a clinical 1.5 T system to maintain hard-
ware performance at a lower field strength [15]. A clini-
cal CMR system operating at lower field strength offers 
improved B0 field homogeneity (linear with field strength 
for the same superconducting magnet design), and thus 
reduced susceptibility gradients at air-tissue interfaces in 
the lung parenchyma. This system configuration has been 
demonstrated for high quality structural and functional 
lung imaging [15–17, 35, 36]. Our optimized stack-of-
spirals acquisition exploits the system field homogeneity 
and prolonged T2* for signal-to-noise-efficient 5.0  ms 
spiral readouts enabling high-quality isotropic 3.5  mm 
resolution proton density images within a 2.5 min acqui-
sition [14, 37], with a nominal variation in acquisition 
time depending on the required amount of slices. Com-
pared to the high-resolution T1-weighed UTE imaging 
presented in Javed et al. [14], the sequence in this study 
used a reduced flip angle (from 5° to 1°) for proton den-
sity weighting, and a lower spatial resolution (from 1.75 
to 3.5  mm) with associated reduced acquisition time 
(from 15.5 to 2.5 min) by reducing the number of spiral 
interleaves (from 911 to 171). Additionally, the cardiac 
diagnostic imaging capabilities are comparable to con-
ventional acquisitions at 1.5 T [15, 38], meaning that this 
CMR system could be applied for comprehensive func-
tional cardiopulmonary imaging exam [39].

Methods for measuring lung water with CMR have 
however successfully been developed for 1.5  T and 
3  T systems [6, 12, 13]. By comparison, Meadus et  al. 
acquired pulmonary images at 3 T using an efficient 3D 
yarnball trajectory for their UTE sequence with isotropic 
2.5 mm resolution in ~ 2 min [12]. We anticipate that our 
sequence and image reconstruction and processing pipe-
line could be translated to 1.5 T and possibly also 3 T fol-
lowing optimization of stack-of-spirals acquisition and 
retraining the neural network on higher field strength 
data.

Limitations
Our study has some notable limitations. First, the pro-
ton density weighted sequence does not discriminate 
between intravascular and extravascular fluid, both 
of which will redistribute due to gravitational forces. 
Although the heart and major vessels were excluded 
from the lung segmentation, it is inevitable that part of 
the quantified LWD originates from spins in the exten-
sive pulmonary capillary bed. This could potentially have 
implications in the LWD quantification in patients with 
pulmonary perfusion deficits. Second, an accurate lung 
water quantification is dependent on a stable and accu-
rate coil shading correction, as well as a stable signal 
reference with known water density. The assumption of 
a 70% hepatic water density might not hold in patient 
cohorts with fat infiltration or iron overload in the liver. 
Third, the studied cohort was predominantly young and 
healthy, and future patient studies and further method 
development are warranted to determine if CMR quanti-
fication of dynamic changes in LWD during exercise can 
unmask latent heart failure.

Conclusions
Redistribution of lung water density induced by gravita-
tional forces can be depicted and quantified using a free-
breathing 3D isotropic proton density weighted UTE 
sequence on a high-performance 0.55  T CMR system, 
along with a fully automated image processing pipeline.
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